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0. Introduction 

The central result of this paper is the following. 

Theorem (SC = HC). Let k be a commutative unital ring. There 
kz !, from Locally Finite Simpliciai Complexes to Associative 
inducing an isomorphixn 

H*(.Z, k) s H*(kr: !, kz ! ) 

is a functor, C w 
Unital k-Algebras 

between the simpliciai cohomology of C and the Hochschild cohomology of ks! . 
The isomorphism preserves the cup product. 0 

The ring Sk=! has a tidy description: for simplices a, KC write 0 2 r when o is 
incident to r, (i.e. acr). An element of kz! is a formal (possibly infinite) sum 

c D Z r m,, ,(a 2) where m,, T E k. The multiplication is determined by associativity, 
k-bilinearity, and the rule: (a, 7)(o), 7’) = 0 if 7# 0’ and (a, 7)(7,7’) = (a, 7’). Note 
that kz! is commutative if and only if C has dimension zero. 

The proof of SC = HC requires the development of an intermediate theory of dia- 
grams and their cohomology (Sections 2,4). ‘The Cohomology Comparison Theorem 
(CCT), quoted in Section 5, then establishes’ an isomorphism between diagram and 
Hochschild cohomologies. Meanwhile there is an isomorphism between certain 
simplicial and diagram cohomologies (Section 4). These combine to yield the first 
statement of SC = HC (Section 6). For the second we realize the isomorphism by an 
explicit cochain map 7; : C*(Z” k) -+ C*(kz ., * IL=!), (Sections 5,6), and show that it 
preserves the cup product (Section 6). {Jnfortunately ri is not a substitute for the 
CCT: we are unablG to show by direct calculation that H*(I*& is an isomorphism. 
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The Hochschild cohomology of any associative algebra carries a (possibly non- 
abelian) graded Lie product (Section 3); yet none has previously been noted on 
~*(z,k). The reason is simple (Section 6): when the algebra is kz? the product is 
abelian. The proof requires I$ and the introduction of Steenrod’s Ui (Section 4). 
The latter also propel us along a small detour in Sections 45 to take care of some 
unfinished business from [3]: the definition of cohomology operations on diagram 
cohomology . 

The utility of diagidms in the simplicial setting is not limited to SC= HC. They 

naturally lend themselves to the description of some ‘generalized simplicial CO- 

homology theories’ (Section 7). These theories satisfy the usual Eilenberg-Steenrod 

axioms with the exception of the dimension axiom. 
A detailed account of the basic foundational work on diagrams and their co- 

homology - as well as the CCT - is presented in our earlier paper. “On the deforma- 

tion of algebra morphisms and diagrams” [3]. However, faith in the cited theorems 

is an adequate substitute for that paper since we have repeated all relevant defini- 

t ions here. 

This paper is not the first attempt to recognize H*(2’, k) as an algebraic co- 

homology theory. Clarke [l] developed a cohomology theory for semigroups with 

N-O along the pat tern of Hochschild cohomology. He then showed that, when X 

is finite, C*(Z, k) is isomorphic to his C*(S, k), where S = (0) L’ ((0, T)) c k,! . In 

fact, it is immediate from Clarke’s definitions that C*(S, k) = im z-2, whici: we have 

clhcwhcrc termed the sfrjct cochains of k r!. Howl:ver, the force of the CC?’ is then 
required to bridge the gap between the strict (:= semigroup) and Hochschild co- 

homologies. t 

In ;I different win, Watts [9] showed that H*( C, k) is given by dc‘ived functors. 

Specifically he showed it isomorphic to a Yoneda l:ohomology calculated in the cate- 

gory of !efr modules over a diagram. That Yoneda cohomology is, in turn, trivially 

seen to be just Ext*ik,!, k\-!), calculated in the category of lefr-k=!-modules. Un- 

fortunately this does not give Hochschild cohomology; for that one must start wit11 

bimodules (over the same diagram) and then use the CCT, which is nontrivial. 

However, Watt’s approach yields two bounties which ours has not (so far): 

(1) It applies when C is a semi-simplicial complex. 

(2) it can be used to show that I-I&Z’, k) is given by derived functors. 

W shall adhere to certain conventions throughout this paper: To begin, we fix 

;1 ~onmlutative associative unital ring k. A k-algebra is an associative unital ring A 
equipped with a unital ring morphism J: k -+ A, (the strucfure map), whose image 
i\ contained in the center of .I We suppress j’and write a for f(a), even though f 
riced not be a monomorphism. Of course, a k-algebra morphism is just a unital ring 
morphism 0 : A -+ r which commutes with the structure maps of il and K The cate- 
@rv of k-algebras will be denoted by ALG; also ALG” will denote the category of _ 

c’ontrxariant functors / --+ ALG. (We have removed the tra&r ional ‘op’.) A two- 

dcd . h-mxhk ,21 is a A-bitrmiuie it am = ma for all aE k, tt1 EM; (i.e., M is a 

.?~‘tt~tlletriC* k-module). [Better, but ncnstandard, terminoloyy would be: M is a 
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(k -+ /l)-bimodule.] Finally, note that if @ : A + r is a k-algebra morphism and A4 
is a Fbimodule, then A4 becomes 1 /i-bi_module through @: define Am and null. to 
be #(h)m and m@(A). 

1. Posets and simplicial complexes 

We shall employ two familiar functors: one, C, embeds the category of partially 
ordered sets (posets) in the category of simplicial complexes; the other, I, does just 
the revert:. These are not inverses; indeed ZI(C) is the barycentric subdivision of 
C. The definitions are: 

The geometric realization of a poset I is the simplicial complex X(1) in 
which Z(I), = the p-simplices = (0 = (ip < --SO)}. The rth face of 0 is Ok= 
(i,,<-<i;<=-• <iO) and the boundary is aa = zFz_ (-l)P-r~r. An order-preserving 
map I -+ J clearly induces a simplical map E(Z) -+ Z(J). 

Next, the simplices of a simplicial complex C are partially ordered by the inci- 
dence relation and, so, form a poset I(C). [The incidence relation is the transitive, 
reflexive closure of the face relation: o > r e 0 is a face of r.] A simplicial map 
Z--+ ,?? induces an order-preserving map I(C) -+ I@) whose image is a filter. [?F z I 
is a filter if i > j, j E .F * i E A] This will be important in Section 7. 

Note, for use in later sections, that a poset may be viewed as the object set c’,f a 
small category. For every order relation irj there is a unique map, denoted ij, fl am 

i to j. Mte that id, = (i, i) and (j, k)(i, j) = (i, k). 

2. Diayams and modules 

A diagram (of k-algebras) over a small category v is a contravariant functor 
A : (6 -+ ALG, (a ‘presheaf ‘); for i E ob( ‘f; ) and w E map( 6) we abbreviate A(i) and 
A(W) to Ai and @” (=&K). A diagram over the one point category * is just a 
k-algebra; i.e. ALG *sALG. Now any functor p : % -+ I/’ induces a functor 
ts;: ALG”‘-+ ALG’: In particular, the unique ‘6 --+* induces a functor ALG-+ ALG” 
whose image consists of the constant diagrams. We represent the image of k by k, 
or simply k; so k’= k and $$‘= id for all i and w. When ‘t. = I@‘) we shall write k2 
for k,. 

Suppose that A is a diagram over f and [B is a diagram over !I/‘. A morphism 
,A --+ 53 consists of a functor p : k -+ I/* together with a natu;.al transformation 
;A --+@B in ALG ‘. (NJ?. We may have L = I/‘, pfid.) In this way diagrams form 

a category, DIAG. 
A birnodu/e over a diagram A E ALG’ is a contravariant functor M : ‘f. -+ Abelian 

Groups satisfying : 
(1) Each M’ is an A’-bimodule. 
(2) Each T:.y : MJ -+ W’ is an A-Wmodule morphism where IM’ is an Wbimodule 

through 0”: Ai+ A’. 
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The A-bimodules form an abelian category which is bicomplete and has enough 
projectives and enough injectives. 

3. Review of Wochschild cohomology 

Let A be a k-algebra and M, a A-bimodule. Set 

c~(A, M) = {f: fi A--+ M 1 (i) f is kc-multilinear and 

(ii) J&, . . ..xI)=O whenever any xi=l}. 

(Condition (ii) is called normality; purists may wish to omit it, thereby obtaining 
‘the unnormalized Hochschild cochains’. Doing so will not affect th< cohomology 
[3, $71.) Note that C’(k,M) =M and C”‘“(k,M) =O. Define S : Cq(A,M) -+ 
P+‘(A,M) by 

The cohomology of the complex C*(A,M) is denoted N*(A M) and is called the 
Hochschiid &homology [4]. Of course, H*(A, -) is a furictor, but it need not be 
a 6-functor (unless k is a field). That is, a short exact sequence (E) does not generally 
induce the long exact sequence of cohomology. However, it will if (E) is allowable, 
i.e. (E) splits when viewed as an exact sequence of k-modules. Such allowable exact 
sequences serve as the building blocks of a relative Yoneda extensions theory which 
is denoted Ext,: (-, -) [S, Chaps. 1X,X11]. Then H*(A, -)zExt,?&l; -) [S, Chap. X]. 

In (21 the first author established that H*(A, ,4) carries an associative graded com- 
mutative cup product and a graded Lie product which acts as graded derivations on 
the cup product. [The Lie product can be non-trivial, but not when A arises from 
a si mplicial complex as kz ! (Section 6).] 

These products are most naturally defined at the cochain level, as is at least one 
other product which, however, is not inherited by the cohomology. We sketch the 
details: 

The crrp product of f p e P(A, A) and gq E C’Ql, A) is the cochain f p U gq E 
CL * “(, 1, .A) given by 

.f~‘ugq(~p+qr . ..A =f(lp+q, l .J,+1)g(~q~~**,~I)* 

One readily shows: 

(3.1) 

B(fpugq)=6fug+(-I)pfu~g. (3.2) 

So the cup product is well-defined on the Hochschild cohomology. 
The cup product of cochains is not graded commutative, i.e. in general, 

*f” U g’/ + (- 1 p g” U fLJ. Ho?vever, at the cohomology level this failure is rectified: 
&fine th:: composition product fp 0 gq E Cp+lz - ‘(A, A) by 
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Then 

fP~gQ(Ap+q-*, ~*=A) 

= i (-1) (p-i)(q-lif( . . . . Ai+q,q(Ai+q_l, . . . . &),A&,, l ** ). (3.3) 
i= 1 

S(fPGg’l) =f Gg+(-1)4-‘&f ~g+(-1)q{guf-(-l)pqfug}. (3.4) 

This equation demonstrates both the commutativity of U at the cohomology level 
and the lack thereof at the cochain level. 

To view 5 as a graded product define the degree of fp to be p - 1. As (3.4) 

shows, 6 is not well-defined on cohomology. However, its graded commutator is. 
Define [fp, gq] c Cptqv’(A,A) by 

[fP,g4] = f ,g-(-l)‘p-l)(q-l)g~f. (3.5) 

Then (3.4) shows this is well-defined at the cohomology level. Moreover, calculation 
reveals that it is a graded Lie product, i.e. 

and 

[fP, gq = -(-1)‘p-‘)(q-l)[g, f] 

(_1)tP-lw-I) [[fP,gq,h’]+(-l)(q-l)~p-l)[[gq,hr], fp] 

+ (- 1)” - ‘)(q-‘)[[h: fp], gy = 0. 

(3 96) 

(3.7) 

Finally, let A4 be a /l-bimodule. Observe that if fp E Cp(A, M) while gq E 
Cq(A,/l), then (3.1) and (3.3) define cochains fug, gUfeCP*q(A,M) and 
fog& Ptq-l(A,M). However, gof and [f,g] are meaningless. 

4. Diagram, simplicial, and Yoneda cohomologies 

Some of the results of this section can be formulated over an arbitrary small cate- 
gory. Nonetheless, for simplicity we restrict the setting of this section and consider 
only posets as base categories. 

Fix a poset I. If CE Z(I), we shall write (-l)O for (-l)p. Now let A be a diagram 
over I and let M be an A-bimodule. (So if ilj there is a ring map @‘j : Ai + A’ and 
an &Q-bimodule map T? Mj -+ Mi.) The diagram cochains appear as the total 
complex of a double complex. Specifically, set Cq = n,,, Cq(& Mi) and 

C@P(A, M)= (f: Z(I),-,Cq 1 PE Cq(&, I!J’p) where o=(ip<-<iO)}. 

(Note. We write r0 for T(a).) 
Define two anti-commuting coboundaries & : Cq* p -+ Cq+‘*’ and as : Cqvp + 

P p+ ’ as follows: 

(6/J)” = (-l)CGra (Hochschild coboundary) 

and, for a=(ip+lc~~~CiO)E~(~)p+l, 

(t$sr)U = yS0 = TiP+iiproP+l -r~p+~~~ I - . . . -+(-l)P+lr*O@i~iO. 
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Then C*(A, M) is given by 

C”( A, M) = fl CQ* “(/a M) 
q+p=n 

and (6 =&+ 6,. (A comment for the purists: if diagrams cochains are constructed 
startiing with unnormalized Hochschild cochains the cohomology is not affected 

t3, VI.) 

Theorem. H*(E(I), k) s If*&, k,). 

Proof. Observe that, for any M, Cq>OqP(kI, M) =0 since Cq”(k,M) =O. Hence 
C”(k,, ‘TV 1) = C”-n(k,, h/l) and dl, = 0. When M = k, define i * : C*(Z(I), k) * C*(kl, k,) 

bq’ 
(if”)” =f(a) if 06ZZ(I),,, 

(4.1) 
= 0 otherwise. 

It is clear that i* is a k-module isomorphism. That it is a cochain map follows im- 
mediately from the definition of 6s and the fact that 7’t = @i = idk for all ir j e I. i71 

When I = I(C) for a simplicial complex C this isomorphrslii asserts that 
H*(kr, kL) is the simplicial cohomology of C’, the barycentric subdivision of C. Of 
course, in the most important cases the latter is the same as the simplicial cohcrmology 
of Z, e.g. whenever 25’ is locally finite. Observe further that a local coefficieirt system 
on C’ is just a k,-bimodule M and, following the proof above, classi;;al local co- 
homoIogies appear as H*(k=, M). 

As in Section 3, H*(A, -) is a S-functor only ~!a tive to a special class of allowable 
short exact sequences. These, in turn, are the foundation of a relative Yoneda ex- 
tension theory, Ext*,(-, -) for A-bimodules. As before (but less trivially) there is 
an isomorphism H*(A, -) z Ext,z(A, -). [0 -+ M 1 -+ M2 -+ M3 + 0 is allowable if 
and only if every 0 -+ IM{ -+ M: --+ MS -+O splits when viewed as a sequence of i 
k-bimodules.] 

Of course, we expect there to be cup and Lie products defined on H*(A, A). Their 
description is intricate, involving - as one might anticipate - not only U and 6 for 
(C*(A’, A’j} but also Steenrod’s Ui for C= E(I) [8]. We begin with the latter, 
giving explicit definitions only for U. (= U) and 'Ul . 

Suppose &Zp and a”+, say a’-(i,<-do) and a”=(jq<*~=<jo). Then if 
io=jq define cfUd’~Z~+, by 

If, for some I- we have i, = jq and i,_ 1 = j. define a (p + Q - 1)-chain, a’U1 G”, by 
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Now for TE C’“(& M) and d E C”(/A,& we define TUd E P+‘(& M) and 
rzd~C~+‘+~(~,&l) by 

and 

(rUd)a = c (_l)O”(m-qo’U~Q” (4.4) a=a’Ua” 

(r 5 d)O = c (-1)Q’TQ’ 5 do”- (-l)O c +-dOWU TO’, 
a=a’Ua” (4.5) 

u= fU’U, u” 

(the + is dictated by (4.3).) Naturally, when M = JJ we define [c d] E C”‘+ ‘- ‘(k, A) 

bY 
[r;d] = r_cr d -(-1)‘” -*)(n-Q 5 r. (4.6) 

Formulae (4.4-4.6) appear somewhat ad hoc here. In the next section we shall, 
among other things, show how they arise and prove that they are ‘correct’ when 
Z(Z) is locally finite. For the movement we direct two further comments to the 
reader familiar with (31: 

(1) If & ZZ(A, A) is an infinitesimal, then the primary obstruction to integrating 
f to a deformation of /J is just r 5 r 

(2) The formulae in [3] for the case I = {OK 1) agree with (4.4-4.6). 

5. The diagram ring and the CCT 

We construct an embedding ! : DIAG -+ ALG, A t-+ A!, and ‘compatible’ exact 
embeddings ! : &Bimodules -+ A!-Bimodules, M I---O M ! . In nany cases the latter 
functors induce cohomology isomorphisms, even though they preserve neither pro- 
jectives not injectives. 

Let A be a diagram over K Its dicg,ram ring, A!, is defined as follows: 
For every w : i --+ j in %’ let &V’ d:znote a copy of A’ indexed by w. We write a 

general element of A’@ w as a’@“, but abbreviate l@” to @“. Set A! = n, uti, k#“’ 
with multiplication given by (infinite) linearity and 

Then A! is an associative unital k-algebra. (The unit is L Gidt.) Two special cases 
merit individual mention: When % is a group - that is, a one object category in 
which every map is an isomorphism - k I* ! is the group ring of % over k. If % is a 
poset, then k, ! is a subring of the Z’ x %’ matrices over k, namely those which have 
a 0 in cell (i, j) whenever is j. (These have been called Pc tat toe algebras by 
Mitchell [6].) Note that k,(,,! = kz! is precisely the rim. liescribed in the intro- 
duction. 

For each kbimodule !M we define kJ! in a pa.ralZ fashion. So M! = 

n,. u,,, t’~?@~ and whenever uw exists we have both 

(a’@“)(wJ@“) = a’T~~(tnj)@“” and (mi$“)~ah#P) = m’~~,~(a$b”“. 
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Now M t-+ M ! is exact and, so, there is a natural transformation 

co”: Ext*,r-, -) -+ Ext&(-!, -!). 

In particular, there is a map H*(A, -) -+ H*(;A!, -!) from diagram cohomology to 
Hochschild cohomology. This is induced by a cochain map t*: C*(A, -) -+ 
c*(A!, - !) which we shall describe shortly. But first note that in dimension zero W* 
is just the canonical map Horn,&, -)+ HomJA!(-, -!). Hence if ! is not full - as 
may well happen - u* is certainly not an epimorphism. The Cohomo~og~~ Conrpwi- 
son Theorem addresses the question: when is it an isomorphism? We quote the 
portion relevant to the simplicial theory. 

Theorem (CCT). cr)* is an isomorphism in the following cases: 
(i) / is a finite poset; A is any diagram over ‘f . 

(ii) 4 is a poser in which +] = (i 2-j ) is finite for every j; A is a diagtarn im which 
each A’ is k-flnt and each Horn, __ .+-, -) + HomA A (-, -) is a natural epimor- 
phism. II: 

In case (i) we shall say that A is a finite diagram. Note that the conditions on A 
in case (ii) are automatic if each 44’ is a localization of k. 

To describe T* - which we do only when ‘/ is a poset - we need some notation 
and a definition. A strict cochain FE C”(A!, M!) is one which satisfies 

(i) 
(ii) 

(iii) 

F(_v,,, . . . , A-,) = 0 if any A-~ = Gi’ for some i. 

F(~,,+?I’~I~~, . . . , a, qPj1) = 0 unless j, = i, _ I for all r. 

F(a,,qV1 I, . . . , q @‘I 41) E rJ&p,4~~ 
(5.1) 

[Here a, E A?] 
The strict cochains form a subcomplex c,*(A!, I’M!) which is obviously closed 

under U and, when IM = A, 5. Consequently the ‘strict cohomology’, H,*(A!, A! ), 
has cup and Lie products as in Section 3 and H,*(A!, A!) + H*( A!, A!) is a moi.- 
phism for both. 

For CJ = (i,, < l c iO) E .?l( / )!, define II, E Cr’(M: .A’r) by ncr(aJ,, . . . , tq ) = a,, 9 - l al . 

(the multiplication cochain). If h E C”‘(Aj, M”) and i ,,,, . . . , i, fz +., thre is only one 
reasonable interpretation for h(a,,), . . . , a,), where a, E A”, namely: 

h(a,,,, . . . v q) = h(@-‘i~Pt(a,,,), . . . , qP(a,)). 

At last, for r~ C”(A, /VI) we define TPJE C”(A!, M !) by 

and 
r&f is strict (5.2) 

where 0 = (i,,s l I&). [N.L‘. i, = i, 1 is permitted; i.e., (T may be a ‘degenerate’ 
~Gmplex. If CJ’ is degenerate, interpret n,, and f O’ as 0.1 



Note that t*: C* factors through CF( 1, -!). In fact there is 
a cochain map f+: -) which is a retrac r t* (i.e. Z*f+= id). 

- !) is &vq+:s a monomorphism. When A is finite this is 
the CCT implies Hs* I, -!)sH*(A!, -!). We do not know 

is irue in case (i& 
the explicit description of P and, so, refer the interested reader 
remark only that a straightforward calculation reveals 

r 5 qtr. 6 t-A). (5*3) 

Of course, (5.3) justifies definitions (4.4-4.6). tt also immediately implies that U 
and 1, ] are well-defined c n N’@( ), since they are on H,*(A!, A!). 

Tbeotem. yS(g’) is l~~.~~n~te~ then (4.4) and (4.6) deflae graded commutative 
und graded tie products on H*( ). Moreover, H*(t) =w* is a morphism for 
both produc.“s. 

Proof. Observe that (5.3) and 3+t+=id imply 

t(TUB) - tTU rA E ker f*; 

it is clearly a cocycle if r ant A are. Now if A is finite H*(i) is an isomorphism 
and, so, 

t(f U&d) - tru td E &@(A!, A!). 

That is, H*(t) is a U-morphism; since it is also an isomorphism we find U is graded 
commutative on H*(A, A). 

For the general case, set 

fin *I-” = nJA - (-l)m”d UT. 

We wish to find an &kCm’“-’ (&A) with r*A =SsZ. To do so we construct 
a particular sequence of cochains {&IO, &?,, . . . ) satisfying: for each 0 E 2Y( ‘d), 

sd: i 0) is finite. From the construction it will be clear that C Q, may serve as 
SE. If B E Z’(% ) write A, for &A where p is the inclusion ~7 4 K. The obvious restric- 
tion map (-)I, : C*(A, A) -+ C*(A@, AJ is a morphism for U and 5. Moreover. it 
has a retract: extend Jqr~ C*(A,,A,) to A by setting na’=O if &la. The coll~c- 
tion ($2,) is obtained by an iterative procedure: since CI is finite the last paragraph 
shows (T*.4)1, E B m”‘(Anr A,). Suppose, for some s, that we have constructed 
(LQ,,XS) satisfying: 

(i) 0: = 0 unless a~ 0‘ for some (I’E Z( 4 )r, and 
(ii) (T+AI, =S C,,, 52, when dim a<s. 
[These conditions clearly hold when s = 0.) Then for each ct E Ei’r: )S there is an 

QC+Cmcn-’ (A,, AC) for which (f *d - 6 I,,, Q)[, =&2,. Extend Q, to A. It f&- 
lows from local finiteness that QS= C f2a is a well-defined cochain in Cm+n-l(A, A). 
Since conditions (i) and (ii) are immediate for {Q,,r<s+ l}, the induction pro- 
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ceeds. Note that local finiteness and (i) together imply (r 1 ii?: #O} is finite, and so 
we may form Q = C 9,. Then r* d = &2. 

A similar argument shows H*(r) is a U-morphism: r(TUd) - rTUtd is strict 
and, so, is determined by its evaluations at tuples of the form (~nt+,#~+~~~+~-~$ . ..) 
al@‘li@). Such tuples correspond to finite pieces of the diagram. The first para- 
graph then asserts: t(TUd) - rTU rd is a ‘local’ coboundary when r ;tnd A are 
cocycles. The local finiteness allows us to patch the cobounding cochains together 
as in the last paragraph. We omit the details. 

With obvious modifications, the above proofs will yield the claims for [ ,). 

6. Simplicial cohomology is Hochschild cohomology 

Let I be a poset in which each tj = (i ~jj is finite. We showed in Section 4 that 
H*(Z(I), k)sH*(k[, k!). On the other hand it is trivial that case (ii) of the CCT 
applies to /- = I, A= kl. Hence, H*(T) is an isomorphism. Let 

f” = r*i* : C*(E(ir), k) * C*(kl !, kl!). 

Then we have 

Theorem (SC = HC). !f each !/ is finite, then H*(f) : H*[r!Q. k) --+ H*(k,!, kl!) is 
an ison~orphism. 3 

The finiteness condition is automatic when I = I(Z) for a simplicial complex 
C. Then Z(I) =C’, the barycentric subdiGsion of C, and we find H*(C’, k)s 
H*(k,!, kL!). If, moreover, C is locally finite then we may replace C’ with it in the 
last isomorphism. 

Note that H*(k,!, k,!) has a graded Lie product [ ,] while none is known for 
H*(E(l), k). In fact, [ , ] is abelian. Also H*(f) is a morphism for the cup product. 
The proof of these claims requires Steenrod’s extension of his U-products to 
O(Z(!), k) [S]. 

Recall that CP = C&E(I), k) is the free k-module generated by Z(l),, and Cp= 
C”(T(I), k) = Homk(C,, k). Steenrod begins by generalizing U (=-- U,) and Ur to ob- 
tain bilinear maps U; : Cr, x Ccl -+ Cl, + (I , . Then he defines U g Cc” x Cq -+ C’” “I I ’ ’ by 

.fj’U, g”(o) - c +,f(a’)g(a”) (6.1) 
fl !(r Ud” 

where OE.E(Q,+~~+;, cr’~ L’(I),,, and a”~Z(l)~. 
As with U I and <y, these are not well-defined at the cohomology level, although 

they lead to operations - tht: Steenrod squares - which are. We shall not need the 
explicit description of Uj for iz2: however, for is2 we shalt require the co- 
boundary formula (which applies for every i): 

w-” Q ‘f?‘) = d_# u, g + (- 1 )‘lt‘U, & 

+(_1)““‘-/ (fU, ‘s+(--1Y ‘gv, ‘“I‘). (6.2) 
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Note the similarity of (6.2) to (3.2) and (3.4). As there, (6.2) implies both the exis- 
tence and graded commutativity of U ( = U,) at the cohomology level. [U_ 1 = 0.1 

The description of r’* is seen from (4.1) and (5.2) to be: ffP is the strict (infinite) 
k-linear mochain determined by 

#‘kg = f(ip< . . . <&P$ (6.3) 

Pmof. (i) ff U fg is strict an (infinite) &-linear since both ?jcand ?g are. We com- 
pute: 

Since qP = idk in k, anti p’-$@ = @‘” in k,!, the last expression above becomes 

f( 
. 
I~+~< l <i,)g(i,< -<i&b’-+ 

Of course, this is iust f Ug(i,, q< l <i&$~+~‘@ and we have ff U fg = ?(fUg). 
(ii) First note that (4.3) and (6.1) assert 

As in (i), Tf 5 ig is strict and (infinite) k-linear. Again we compute: set cj = 
(-1)(P-J)[o-l), then 

ff 5 Q7((fPQd 1iP-r :, .,,, #ilC) 
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Note that the proposition asserts that UI is essentially a special case of 5. This 
suggests that there may generally be other operations on Hochschild cochains which 
spec$aiize to tJi in this setting. The barrier to constructing such operations seems to 
be the possible non-triviality of [ , ]. 

Corollary. (i) H*(i) is 43 U-n?Orphh. 
(ii) [ , ] is abelian on H*(kl!, kl!). 

Proof. (i) is trivial. 
(ii) For cocycles fp and gq, (6.2) asserts 

Hence 

W-u, g) = (-1) p+4{fU* g+(-l)“N,f1. 

fB(f u2 g) = (-1)p+(1{(-1)p((I-‘~if~ ~g+(-l)“+Q’P-“~g 5 ff} 
= (_-l)Pq+Q (?f 6 ?g+(-l)“+“+Q?gB ff) 

= (-l)“‘“+ “[FL fg]. 

Thus, [?-.f, fg] =d{(-1)q’p’” f(fUz g)) and [ , ] is trivial on the image of H*(t). But 
H*(f) is surjective. Zl 

We close this section with a remark on Clarke’s cohomology. Let 2’ be i\ finite 
simplicial complex and set S = (0) U {@‘j} c k L!. Then S is a semigroup with zero 
and it is not hard to see that Clarke’s cochain complex is just C,*(kr!.!.z!). This 
is not true when C is infinite. Indeed, we do not know if H*(L(l), k? Is always given 
by the strict cohomology - precisely because wcf do not know if the latter always 
agrees with the Hochschild cohomology. In any event, to pass from Clarke’s semi- 
group cchomology to Hochschild cohomology requires H,*(kr!, k,!)= H*(kz!, kI!) 
and this. in turn, requires at least the 1 CCT. 

7. Generalized simplicial cohomology t heorics 
b 

Let f be the category of simpliciai complexes. A generalized simplicial theory 

arises whm ever we fix a base complex A&Y’, a diagram A over I(K) and an 
A-bimodule V. Specifically, the cohomology theory is then the functor defined on 
,.‘A’ by (p:C-)K) +-+ H*( P./A, j%l). [Recall: the objects of .JK are maps 

p:Z-+k’; a map (JJ,:Z,-+K) -+ ( P2 : Z; -+ K) is an .Y’-map Q : Cl -+ & for which 
p+l =pl .] Since .u/* =CY, a generalized simplicial theory on .u’ is determined by a 
>inglc k-algebra ~1 and a A-bimodulc M. In the very special case A = A4 = k the CO- 
homology theory is just 23--+H*(k,, kc)zH*(2”,k); i.e., it is the usual theory 
composed Gth the barycentric subdivision functor, Z -oC’. These generalized 
simplicial theories satisfy all the usual axioms excrpt (possibly) dimension [7]. 
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Functoridity. Any map q: p1 -+p2 in .d/K induces a cochain map 

namely (q+r)” = TQb for G E 2”. [If qcr is degenerate set (q*T)a = 0.) Clearly, 
(q,qd+==q~q:~ 

Exactness. To state this axiom we need an additional concept: relative cohomology 
modules. Let q :pI -‘pa: be an inclusion in . l/K. Define a submodule R\/I, of &M as 

0 if either i or j is in I@,); otherwise, tU,= 
precisely s)ecause I&) is a filter in ICr;). Note 
--) 0 is allowable. The generalized g-relative co- 
n the case K = *, A = M = k this agrees with the 
&.I There is an obvious cochain isomorphism 

(I) -+ C*( fir A, @, M) and, so, Eq induces the required long exact 
cohomology sequence. 

Homotopy. First note that two maps q, q’ : Cl + & induce chain maps on the 

chain complexes of their barycentric subdivisions. A homotopy q-q’ induces a 
chain homotopy, say h : C&5;, k) --) C*+ &Z’& k). So (q - q’)cr = Ma - Sha. We use 
h to construct a cochain homotopy q*- q’*: for & Zn(p2A, @4) define d E 
C” - ‘(p, A, ~3, M) by da = f ha. Then 

W-U” = rhda + (- lysrhg. 

But (GT)hu = 0 implies -ST ha = (- 1 )“Tsha. Hence 

(~A)” = rhda - 6ha = f ((I - q’)a = ( q*r_ qr*r)o, 

That is, q*f - q’*h B”( jJ A, ~3, M) and, consequently, H”(q) = H’“(q’). 

Excision. It is well known that this axiom is equivalent to exactness of the Maypr- 
Vicstoris sequence (7). For the latter, let (7a : (p, :&-+ K)-+(p:E+ K), (CT= 1, 2), 
be ~*omaximal inclusions, (i.e. C=Cr U&). Their intersection is pit : 2’1 n& --+ K, 

whcrep,? is the restriction of p to Z, n&. Denote the inclusion pit --pa by .iu. Thn 

is easily seen to be exact; it yields the required long exact sequence. 

Dimension. Consider the case K = *. As we remarked earhier, we have A = ‘4, 
M = M. Hence, (id : * -+ *) I-+ H*fA, M) and the dimension axiom fails in general. 
Note, however, that if /i is a k-central semi-simple algebra and M = A, then 
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H*(A, At) = H*(*, k). Consequently, if AZ is the constant diagram over I(Z) deter- 
mined by a k-central semi-simple algebra A, then 

H*(Z’, k)~H*(A,,A,)~H*(A,!,A,!). 

j[The last isomorphism follows from case (ii) of the CCT]. 

The subcategory of locally finitf: simplicial complexes merits special attention. 
1For there, when M = A, the cohom! llogies have graded cup products and (generally 
nontrivial) Lie products. If we res!rict further to finite simplicial complexes, then 
fr generalized simplicial cohomolggy (in our sense) becomes 

(p : c+ K) -H*((jm)!, (PM)!). 
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