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0. Introduction
The central result of this paper is the following.

Theorem (SC =HC). Let k be a commutative unital ring. There is a functor, 2+
k!, from Locally Finite Simplicial Complexes to Associative Unital k-Algebras
inducing an isomorphi-m

H*C, k) = H*(kz!, ks!)

between the simplicial cohomology of X and the Hochschild cohomology of ks!.
The isomorphism preserves the cup product. [

The ring k5! has a tidy description: for simplices g, 7C 2 write o =7 when o is
incident to 7, (i.e. dC1). An element of ky! is a formal (possibly infinite) sum
Y. 2. Mg (a,7) where m, € k. The multiplication is determined by associativity,
k-bilinearity, and the rule: (a,7)(a’,t")=0 if t#0” and (o, 7)(1,7')=(0,7’). Note
that k5! is commutative if and only if 2 has dimension zero.

The proof of SC = HC requires the development of an intermediate theory of dia-
grams and their cohomology (Sections 2,4). The Cohomology Comparison Theorem
(CCT), quoted in Section 5, then establishes an isomorphism between diagram and
Hochschild cohomologies. Meanwhile there is an isomorphism between certain
simplicial and diagram cohomologies (Section 4). These combine to yield the first
statement of SC = HC (Section 6). For the second we realize the isomorphism by an
explicit cochain map 1¥: C*(, k) = C*(kx!, ks!), (Sections 5,6), and show that it
preserves the cup product (Section 6). Unfortunately ¥ is not a substitute for the
CCT: we are unablc to show by direct :alculation that H*(ry) is an isomorphism.
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The Hochschild cohomology of any associative algebra carries a (possibly non-
abelian) graded Lie product (Section 3); vet none has previously been noted on
H*(Z, k). The reason is simple (Section 6): when the algebra is ky! the product is
abelian. The proof requires 73 and the introduction of Steenrod’s U; (Section 4).
The latter also propel us along a small detour in Sections 4,5 to take care of some
unfinished business from [3]: the definition of cohomology operations on diagram
cohomology.

The utility of diagiams in the simplicial setting is not limited to SC=HC. They
naturally lend themselves to the description of some ‘generalized simplicial co-
homology theories’ (Section 7). These theories satisfy the usual Eilenberg-Steenrod
axioms with the cxception of the dimension axiom.

A detailed account of the basic foundational work on diagrams and their co-
homology - as well as the CCT - is presented in our earlier paper, ‘‘On the deforma-
tion of algebra morphisms and diagrams’’ [3]. However, faith in the cited theorems
is an adequate substitute for that paper since we have repeated all relevant defini-
tions here.

This paper is not the first attempt to recognize H*(X, k) as an algebraic co-
homology theory. Clarke [1] developed a cohomology theory for semigroups with
zero along the pattern of Hochschild cohomology. He then showed that, when X
is finite, C*(X, k) is isomorphic to his C*(S, k), where S={0} U {{g,7)} Cks!. In
fact, it is immediate from Clarke’s definitions that C*(S, k) = im ¥, whici: we have
clsewhere termed the strict cochains of ky!. Howaver, the force of the CCT is then
required to bridge the gap between the strict (:=semigroup) and Hochschild co-
homologies. {

In a different vein, Watts [9] showed that H*(Z, k) is given by d<.ived functors.
Specttically he showed it isomorphic to a Yoneda cohomology calculated in the cate-
gory of lefr modules over a diagram. That Yoneda cohomology is, in turn, trivially
seen to be just Ext*ik. !, ky!), calculated in the category of /lefr-ky!-modules. Un-
fortunately this does not give Hochschild cohomology; for that one must start wita
bimodules (over the same diagram) and then use the CCT, which is nontrivial.
However, Watt's approach yields two bounties which ours has not (so far):

(1) 1t applies when X is a semi-simplicial complex.

(2) 1t can be used to show tnat H.(Z, k) is given by derived functors.

We shall adhere to certain conventions throughout this paper: To begin, we fix
a commutative associative unital ring k. A k-algebra is an associative unital ring A
equipped with a unital ring morphism f: & — A, (the structure map), whose image
Is contained in the center of /1. We suppress f and write « for f(a), even though f
need not be a monomorphism. Of course, a k-algebra morphism is just a unital ring
morphism ¢ : 1 — I which commutes with the structure maps of A and I'. The cate-
gory of A-algebras will be denoted by ALG; also ALG* will denote the category of
contravariant functors -+ — ALG. (We¢ have removed the traditional ‘op’.) A two-
sided A-module M is a A-bimodule it am=ma for all aek, meM; (i.e., M is a
svmimetric k-module). [Better, but ncnstandard, terminology would be: M is a
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(k — A)-bimodule.] Finally, note that if ¢ : A — I is a k-algebra morphism and M
is a /-bimodule, then M becomes 1 A-bimodule through ¢: define Am and mA to
be ¢(A)m and me(A).

1. Posets and simplicial complexes

We shall employ two familiar functors: one, X, embeds the category of partially
ordered sets (posets) in the category of simplicial complexes; the other, I, does just
the rever:¢. These are not inverses; indeed X7(X) is the barycentric subdivision of
2. The definitions are:

The geometric realization of a poset I is the simplicial complex Z(/) in
which X(/), = the p-simplices = {o=(i,<---<iy)}. The rth face of ¢ is o,=
(ip< -+ <iI,<:--<ig) and the boundary is do = T, , (-1)” "6,. An order-preserving
map /- J clearly induces a simplical map X(/) — Z(J).

Next, the simplices of a simplicial complex X are partially ordered by the inci-
dence relation and, so, form a poset I(Z2). [The incidence relation is the transitive,
reflexive closure of the face relation: 6>t @ ¢ is a face of 7.] A simplicial map
X — ¥ induces an order-preserving map 1(X) — I(X) whose image is a filter. [.F 1
is a filter if i>j, je .# =ie.#] This will be important in Section 7.

Note, for use in later sections, that a poset may be viewed as the object set ¢f a
small category. For every order relation i <j there is a unique map, denoted ij, f.om
i to j. Note that id, = (i, i) and (J, k)(i, j) = (i, k).

2. Diagrams and modules

A diagram (of k-algebras) over a small category ¢ is a contravariant functor
A ¢ = ALG, (a ‘presheaf’); for ie ob(# ) and we map(#') we abbreviate A(/) and
A(w) to A’ and ¢" (=¢%). A diagram over the one point category # is just a
k-algebra; i.e. ALG*=ALG. Now any functor p:7 — 7~ induces a functor
p:ALG”— ALGY. In particular, the unique # — * induces a functor ALG = ALG*
whose image consists of the constant diagrams. We represent the image of k by k
or simply k; so k'=k and @' =id for all i and w. When » =I(X") we shall write ks
for k..

Suppose that A is a diagram over # and B is a diagram over . A morphism
A — B consists of a functor p: 7 — 4 together with a natural transformation
A—pB in ALG*. (N.B. We may have » =2, p#id.) In this way diagrams form
a category, DIAG.

A bimodule over a diagram A e ALG? is a contravariant functor M : # — Abelian
Groups satisfying:

(1) Each M' is an A-bimodule.

(2) Each 77 : M/ = M'is an A’-tLimodule morphism where M’ is an A’-bimodule
through @' : A/ > AL,
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The A-bimodules form an abelian category which is bicomplete and has enough
projectives and enough injectives.

3. Review of Hochschild cohomology
Let A be a k-algebra and M, a A-bimodule. Set

q
CUAM)={f:]]A~M]| () fis k-multilinear and
(i1) f(xy, ..., x) =0 whenever any x;=1}.

(Condition (ii) is called normality,; purists may wish to omit it, thereby obtaining
‘the unnormalized Hochschild cochains’. Doing so will not affect the cohomology
[3,§7].) Note that C%k,M)=M and C7°k,M)=0. Define 6:CYA,M)—
C7*Y(A,M) by

Ofthgatr s ) = Agu i flhgroos A) + ¥ (DT (s A, 00

i=q+1

+ ('—l)q—lf('lq+l, "'sAZ)Al'

The cohomology of the complex C*(A, M) is denoted H*(A, M) and is called the
Hochschild Cohomology [4]. Of course, H*(A, -) is a funictor, bui it i2ed not be
a d-functor (unless  is a field). That is, a short exact sequence (E') does not generally
induce the iong exact sequence of cohomology. However, it will if (E) is allowable,
1.e. (E) splits when viewed as an exact sequence of k-modules. Such allowakle exact
sequences serve as the building blocks of a relative Yoneda extensions thcory which
is denioted Ext’j(—, —) [S, Chaps. IX,XII]. Then H*(A, =) =Ext¥(A. -) [5, Chap. X].

In [2] the first author established that H*(A, A) carries an associative graded com-
mutative cup product and a graded Lie product which acts as graded derivations on
the cup product. [The Lie product can be non-trivial, but not when A arises from
a simplicial complex as k! (Section 6).]

These products are most naturally defined at the cochain level, as is at least one
other product which, however, is not inherited by the cohomology. We sketch the
details:

The cup product of fPeCP(A,A) and g%e€ C9A, A) is the cochain fPUg%
C?9A,A) given by

.prgq(Apaqv---»A])=f(A~p+qv- --Aq+l)g(iq’---’il)- (31)
One readily shows:
o(ffUgN) =ofVUg+(-1PfUdg. (3.2)

Se the cup product is well-defined on the Hochschild cohomology.

The cup product of cochains is not graded commutative, i.e. in general,
SPUgY#(-1371g9U fP. However, at the cohomology level this failure is rectified:
define th: composition product fPcg?e€ CP*9-Y(A, A) by
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fpﬁgq()‘p+q I '--s)‘l)

“‘Z ( 1)(p e~ “f( :+q»¢1()~:+q Ir- i)a/li—la-")- (33)
Then
o(fPog?) =foog+(-1)?"'6f5g+ (- {gUf-(-1)"fUg}. (3.4)
This equation demonstrates both the commutativity of U at the cohomology level
and the lack thereof at the cochain level.
To view & as a graded product define the degree of fP to be p—1. As (3.4)

shows, 5 is not well-defined on cohomology. However, its graded commutator is.
Define [f%, g7)e C?*971(A, A) by

[/ g9 =fog—(-1)P~Da-Deg5f (3.5)

Then (3.4) shows this is well-defined at the cohomology level. Moreover, calculation
reveals that it is a graded Lie product, i.e.

7 g% = —(-)P~Da-big £] (3.6)
and

(=P DD fP g9 B + (= 1)4 - DPD[[g9 h], fP]
+ (=1~ D@-D[aY, fP], 9] = 0. (3.7)

Finally, let M be a A-bimodule. Observe that if f”e C?(A, M) while g€
C%A, A), then (3.1) and (3.3) define cochains fUg, gUfeC?*9A,M) and
f5geCP*971(A,M). However, g5 f and [f, g] are meaningless.

4. Diagram, simplicial, and Yoneda cohomologies

Some of the results of this section can be formulated over an arbitrary small cate-
gory. Nonetheless, for simplicity we restrict the setting of this section and consider
only posets as base categories.

Fix a poset I. If g € Z(I), we shall write (—1)° for (—1)”. Now let A be a diagram
over I and let M be an A-bimodule. (So if i</ there is a ring map ¢ : AJ > Al and
an A’-bimodule map 79:M’/— M') The diagram cochains appear as the total
complex of a double complex. Specifically, set C7=T],_, C?(A%, M) and

CoP(A,M)={T: E(I),~C?| I € CUA,MY) where a=(i,<-<ip)}.

(Note. We write I'° for I'(c).)
Define two anti-commuting coboundaries &,:C%?—C9*"? and &,:C%P—
C%P*! as follows:

(6,7)° = (-1)¢éI°  (Hochschild coboundary)
and, for o= (i, < <ip€Z()p+1,
(3, T)° = % = Tio+ 1ol % 1 —[% 4 [% 1 — oot (<1)P 1 [ %0910,



148 M. Gerstenhaber, S.D. Schack

Then C*(A, M) is given by

c'iaM = 11 CHPAM)

g+p=n

and d=4,+J,. (A comment for the purists: if diagrams cochains are constructed
starting with unnormalized Hochschild cochains the cohomology is not affected

13,§71)

Theorem. H*(X(I), k)= H*(k,;,Kk;).

Proof. Observe that, for any M, C?>%?(k;,M)=0 since C9>%k,M)=0. H.nce
Cc"(k,, AN =C%"(k;, M) and J,=0. When M=Kk, define i*: C*Z(I), k) = C*(k., k)
by

f"° =flo) if oeX),,

4.1)
=0 otherwise.

It is clear that i* is a k-module isomorphism. That it is a cochain map follows im-
mediately from the definition of J, and the fact that T} = ¢,/ =idy foralli<jel. [

When I=1(X) for a simplicial complex X2 this isomorphisin asserts that
H*(ky, k) is the simplicial cohomology of 27, the barycentric subdivision of 2. Of
course, in the most important cases the latter is the same as the simplicial cohomology
of X, e.g. whenever 2 is locally finite. Observe further that a local coefficieat system
on X' is just a ky-bimodule M and, following the proof above, classical local co-
homologies appear as H*(ky, M).

As in Section 3, H*(A, -) is a d-functor only rzlative to a special class of allowable
short exact sequences. These, in turn, are the foundation of a relative Yoneda ex-
tension theory, Ext%(—, —) for A-bimodules. As before (but less trivially) there is
an isomorphism H*(A, =) =ExtX(A -). [0—=> M, = M,—=>M;—0 is allowable if
and only if every 0-»M!—Mj—Mj—0 splits when viewed as a sequence of
k-bimodules.]

Of course, we expect there to be cup and Lie products defined on H*(A, A). Their
description is intricate, invelving - as one might anticipate - not only U and 3 for
{C*(A%, A")} but also Steearod’s U; for T=X(I) [8]. We begin with the latter,
giving explicit definitions only for U, (=U) and U,.

Suppose '€ X, and 6" € 2, say 6" = (i,<--<ip) and "= (j;<--- <jp). Then if
ip=Jj, define 6'Uag"e X, , by

o'Ua"=(i, < <ip=j,< - <Jp) (4.2)

If, for some r we have i, =j, and i,_, = ji, define a (p +¢q—1)-chain, ¢’U, 6", by

O'lul 0’” = (—'l)r(qw”(ip<"'<ir=jq<"'<j0 = i,-_.]<"'<i0). (43)
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Now for I'e C"(A,M) and 4€C"(A, A) we define U4 eC"*"(A, M) and
rs4ecm™"-(a,m) by

(rudyY= YL (-1)7"-oreyg” (4.4)
and ag=0'Ug”
(FsdyY= Y (=1)°T°s4°-(-1° Y =+4a°ure, 4.5
o=¢'Ug” o=tg'U,0"

(the + is dictated by (4.3).) Naturally, when M = A we define [I;4] e C"*"~ (1, A)
by
(LAl =T5A-(-1)"-De-bga5 (4.6)

Formulae (4.4-4.6) appear somewhat ad hoc here. In the next section we shall,
among other things, show how they arise and prove that they are ‘correct’ when
Z(I) is locally finite. For the movement we direct two furither comments to the
reader familiar with [3]:

(1) If I'e Z*(A, A) is an infinitesimal, then the primary obstruction to integrating
I to a deformation of A is just I'c I

(2) The formulae in [3] for the case I={0<1} agree with (4.4-4.6).

3. The diagram ring and the CCT

We construct an embedding ! : DIAG —» ALG, A+ A!, and ‘compatible’ exact
embeddings ! : A-Bimodules = A!-Bimodules, M +»M!. In many cases the latter
functors induce cohomology isomorphisms, even though they preserve neither pro-
jectives not injectives.

Let A be a diagram over v. Its dicgram ring, A!, is defined as follows:

For every w:i—j in ¢ let A‘p™ dznote a copy of A’ indexed by w. We write a
general element of A’‘g* as a'¢"”, but abbreviate 19" to ¢". Set A!=]], I, Algp*
with multiplication given by (infinite) linearity and

(@o™)a'e¢?) = {aia)“'(af)cl)”“' if ow e.xists,
0 otherwise.

Then A! is an associative unital k-algebra. (The unit is ¥ ¢'%.) Two special cases
merit individual mention: When ¢ is a group - that is, a one object category in
which every map is an isomorphism - k. ! is the group ring of 7 over k. If # is a
poset, then k, ! is a subring of the % X ¥ matrices over k, namely those which have
a 0 in cell (4, 7) whenever i£j. (These have been called i‘c tac toe algebras by
Mitchell [6].) Note that k;x)!=ks! is precisely the ring iescribed in the intro-
duction.

For each A-bimodule M we define M! in a parail.i fashion. So M!=
[1, 11, M‘p" and whenever vw exists we have both

(@@")n'g¥) = a'T5(m’ )" and (m'o")a/¢’) = m'oy(a’)e"™.
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Now M =M1 is exact and, so, there is a natural transformation
w*:ExtY/—, )= ExtX,(-!, -1).

In particular, there is a map H*(A, —) = H*(A!, -!) from diagram cohomology to
Hochschild cohomology. This is induced by a cochain map t*:C¥%*A, -)—
C*(A!, -!) which we shall describe shortly. But first note that in dimension zero w*
is just the canonical map Hom s(—, =) = Hom (-, —!). Hence if ! is not full - as
may well happen - w* is certainly not an epimorphism. The Cohomology Compari-
son Theorem addresses the question: when is it an isomorphism? We quote the
portion relevant to the simplicial theory.

Theorem (CCT). w* is an isomorphism in the following cases:

(i) ¢ is a finite poset; A is any diagram over ¥.

(i) ¢ is a poset in which ¢+;={i=j} is finite for every j; A is a diagram in which
each A' is k-flat and each Hom, . (-, —)— Homy (-, -) is a natural epimor-
phism.

In case (i) we shall say that A is a finite diagram. Note that the conditions on A
in case (ii) are automatic if each A’ is a localization of k.

To describe t* - which we do only when r is a poset - we need some notation
and a definition. A strict cochain Fe C"(A!, M!) is on2 which satisfies

(i) F(x,,....,x;) =0 if any x, = ¢" for some i.
(if) Fa,¢", ...,a;0"y=0 unless j, =i, , for all r. (5.1
(iii) F(a,¢"" ', ....a,¢""*) € Mirg'nio,

[Here a, € A".]

The strict cochains form a subcomplex CX(A!, M!) which is obviously closed
under U and, when M= A, &. Consequently the ‘strict cohomology’, H(A!, A!),
has cup and Lie products as in Section 3 and HY(A!, Al) = H*(A!, A!) is a moi-
phisim for both.

For o =(i, < - <ip) € Z(+), define n, € CP(A", Al) by Rol@py s @) =ay, e ay,
(the multiplication cochain). If he C™(A/,M*) and iy, ....i, € ¢, there is only one
reasonable interpretation for A(a,,...,a,), where a,€ A“, namely:

M@y, ...a)) = H(@'(@y), ..., 0" (@)
At last, for I'e C"(A,M) we define t{.I"e C"(A!,M!) by

. is strict (5.2)
and
L@, ") = Y A, U @, @)@
G-0'Ue"
where g =(i,<---<i). [N.F. i,=i, | is permitted; i.e., ¢ may be a ‘degenerate’
n-simplex. If g’ is degenerate, interpret n - and "% as 0.)
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Note that t*: C*(A, —) - C*(A4!, -!) factors through C(A!, —!). In fact there is
a cochain map #*: C’(A!, —!) = C*(A, —) which is a retract for 7* (i.e. t*r*=id).
Hence H*(A, -)— H}(A!, -!) is always a monomorphism. When A is finite this is
an isomorphism and the CCT implies H(A!, -!)=H*(A!, -!). We do not know
if the same is irue in case (ii).

We shall not need the explicit description of £* and, so, refer the interested reader
to [3, §17). Here we remark only that a straightforward calculation reveals

rua = #(zruza), I's #(zI" 5 14). (5.3)

Of course, (5.3) justifies definitions (4.4-4.6). It also immediately implies that U
and [,] are well-defined cn H*(A, A), since they are on H(A!, A!).

Theorem. [f X(¢) is loca.iy finite, then (4.4) and (4.6) define graded commutative
and graded Lie products on H*(A, A). Moreover, H*(t) = w* is @ morphism for
both produc:s.

Proof. Observe that (5.3) and 7*r*=id imply
t(rua)-trUrd eker *;

it is clearly a cocycle if I" anc A are. Now if A is finite H*() is an isomorphism
and, so,

W(ruAa)-trUrde B} (AL AY).

That is, H*(r) is a U-morphism; since it is also an isomorphism we find U is graded
commutative on H*(A, A).
For the general case, set

I"»I"=rva-(-1)"aur.

We wish to find an QeC™*" (A, A) with IT's4=0Q. To do so we construct
a particular sequence of cochains {Q,,,,...} satisfying: for each oeZ(¥),
{r | Q° %0} is finite. From the construction it will be clear that ¥ ©Q, may serve as
Q. If ge Z(¢) write A, for pA where p is the inclusion g < 7. The obvious restric-
tion map (-—)Ia :C*(A, A) = C*(A,, A,) is a morphism for U and 5. Moreover. it
has a retract: extend /7€ C*(A,, A,) to A by setting /7° =0 if 6’¢ a. The collec-
tion {Q,} is obtained by an iterative procedure: since o is finite the last paragraph
shows (I'sA)| € B™*'"(A,, A,). Suppose. for some s, that we have constructed
{Q,,r<s} satisfying:

(i) 2°2=0 unless cCa’ for some 0’e X(*),, and

(ii) ("'*4|,=6%,., @, when dimo<s.

[These conditions clearly hold when s=0.] Then for each o € Z(7), there is an
Q,eC™ " Ay A,) for which (Fs4 -6 £,_, 2,)|,=02,. Extend 2, to A. It ful-
lows from local finiteness that 2,=¥ €, is a well-defined cochain in Cm N (A, A).
Since conditions (i) and (ii) are immediate for {Q,,r<s+1}, the induction pro-
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ceeds. Note that local finiteness and (i) together imply {r | Q7 #0} is finite, and so
we may form Q=Y Q,. Then I'*4 =0Q.

A similar argument shows H*(r) is a U-morphism: t(I"UA4)—t/'Uztd is strict
and, so, is determined by its evaluations at tuples of the form @y 4 g@' "'men, L
a,;9""). Such tuples correspond to finite pieces of the diagram. The first para-
graph then asserts: t(/UA)—tI'Ut4 is a ‘local’ coboundary when I" and 4 are
cocycles. The local finiteness allows us to patch the cobounding cochains together
as in the last paragraph. We omit the details.

With obvious modifications, the above proofs will yield the claims for [,]. 3

6. Simplicial cohomology is Hochschild cohomology

Let / be a poset in which each I;={i =/} is finite. We showed in Section 4 that
HYZE W), k)= H*(K;,Kk;). On the other hand it is trivial that case (ii) of the CCT
applies to ¢ =1, A=k;. Hence, H*(r) is an isomorphism. Let

T* = t** . CXE(), k)~ C*k, Lk, ).
Then we have

Theorem (SC=HC). If each I, is finite, then H*(¥): H*X(). k)=~ H*(k,,k;!) is
an isomorphism. ]

The finiteness condition is automatic when I =1I(Z) for a simplicial complex
. Then X(I)=2", the barycentric subdivision of X, and we find H%Z' k)=
H*(ks! ks !). If, moreover, X is locally finite then we may replace 2’ with it in the
last isomorphism.

Note that H*(k,!,k,;!) has a graded Lie product [,] while none is known for
H*(X),k). In fact, [,] is abelian. Also H*(7) is a morphism for the cup product.
The proof of these claims requires Steenrod’s extension of his U,-products to
Cx(Z (1), k) [8].

Recall that C,=C,(Z(I), k) is the free k-module generated by Z(/), and C* =
C”(X(1), k)=Hom(C), k). Steenrod begins by generalizing U (= Uy) and U, to ob-
tain bilinear maps U, : C,x C,— C,,, ;. Then he defines U;: C*x C?— "' 'by

SPUglo)= L+ fla)ete") (6.1)
where e X(1),, 4. 0'€2(I),, and 6" € X(]),.

As with U, and 3, these are not well-defined at the cohomology level, although
they lead to operations - the Steenrod squares - which are. We shall not need the
explicit description of U, for i=2; however, for /=2 we shall require the co-
boundary formula (which applies for every i):

()‘(f;" L': gq) = 5}‘ Ui g+ (-‘l)pj‘ui (Sg
+ (=D U g+ (=DM gy, ST (6.2)
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Note the similarity of (6.2) to (3.2) and (3.4). As there, (6.2) implies both the exis-
tence and graded commutativity of U (=U,) at the cohomology level. [U_,=0.]

The description of 7* is seen from (4.1) and (5.2) to be: #f” is the strict (infinite)
k-linear p-cochain determined by

(PP .., @) = fliy < -+ <ig)P™. (6.3)

Proposition. (i) #(f/PUg%)=7fUtg.
(i) T°U, g9 =(-1)"9*Dif 5 g,

Pcoof. (i) ©fUtg is strict and (infinite) k-linear since both 7/ and g are. We com-
pute:

TFUTRPr v ..., 0"0)
= ff(¢i,..qipw "---,¢"°""°)-t’g(¢’e"av l,."’q)"l"n)
= Sflip, q< -+ <ig)@lo-dla- glig <+ <ig)@'e®.
Since ¢” =id, in k; anu 9”@’ =@ in k,!, the last expression above becomes
Slips g <+ <i)glig< - <ip)@'r-ak,

Of course, this is iust fUg(,., ,<:+ <ip)@”+* and we have FfUfg=7(fUg).
(ii) First note that (4.3) and (6.1) assert

fPU’ g’l(,‘p”"l<...<jo)
P l . .
= E _;_l)](l]* )-f(‘p*q~|<"'<‘j#q~l<lj~--|<"'<l())g('j+q-l<'"<Ij -l)'
)=\

As in (i), 7f 5 7g is strict and (infinite) k-linear. Again we compute: set ¢ =

S Tg(@res e 5, 90

= E E}ff(¢'p g l""q :""ifg(¢’l”l ""q :,---,¢I}" l)g¢” l'l :,.n-,¢”‘0)
J-=1
p‘ . . i iy i
=L i@l gl g < <)@, 91)
-1

r

=Y egl,,, 1< <i )
et -ff(¢’p-q ey I,.'..¢i1‘:;lr<|1 l’¢j1‘41 Ii/ I'.'_,¢i)il))
,l

= Elelg(’:l‘q ‘<“.<lj—i)
J_ . . . . } i

'f(lp*q—l<‘"<lj+q-l<'j~l<”'<IO)¢""4 ilo
= (_l)P(lI“”fUl g(i;)rq—‘<'..<i0)¢ip'q |to.
and, so,
ifsig=(-DP Vi(fU ). O
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Note that the proposition asserts that U, is essentially a special case of 3. This
suggests that there may generally be other operations on Hochschild cochains which
specialize to U; in this setting. The barrier to constructing such operations seems to
be the possible non-triviality of [,].

Corollary. (i) H*(?) is a U-morphism.
(ii) [,] is abelian on H*(k;!,k;!).

Proof. (i) is trivial.
(ii) For cocycles f” and g9, (6.2) asserts

0(fU8) = (=D fU, g+ (-DPgVU, f}.
Hence
i0(fU,8) = (=DP*Y(=DPU"Dif 5 g+ (-1)PI+ 9P~ Vg 5 7}

= (=1)P*{Ff 5 fg+ (=1)P*P+A7g 5 7}
= (—1)9IP*D[Ef, 7g].

Thus, [/, Tg] =0 {(-1)7"*P#(fU, g)} and [, ] is trivial on the image of H*(t). But
H*(7) is surjective. )

We close this section with a remark on Clarke’s cohomology. Let X be a finite
simplicial complex and set S ={0} U {¢Y}Ck,!. Then S is a semigroup with zero
and it is not hard to see that Clarke’s cochain complex is just C(ks!.%s!). This
is not true when 2 is infinite. Indeed, we do not know if H*(Z(1), k) is always given
by the strict cohomology - precisely because we'do not know if the latter always
agrees with the Hochschild cohomology. In any event, to pass from Clarke’s semi-
group cchomology to Hochschild cohomology requires H¥(ky!, kx!)=H*(ks!, ks!)
and this. in turn, requires at least the CCT.

7. Generalized simplicial cohomology theories

Let » be the category of simplicial cdmplexes. A generalized simplicial theory
arises when ever we fix a base complex Ke.v, a diagram A over I(K) and an
A-bimedule M. Specifically, the cohomology theory is then the functor defined on
Kby (p: 2= K)e=H*(pA, pM). [Recall: the objects of .+/K are maps
p:2>K;amap (p: 2,2 K)—=(P,:2,~K) is an .v-map q:2,— 2, for which
P:q =p;.] Since 7/»=q, a generalized simplicial theory on .v is determined by a
single A-algebra 1 and a A-bimodule M. In the very special case A =M =k the co-
homology theory is just X +»H*(Kky,ks)=H*( X" k); i.e., it is the usual theory
composed with the barycentric subdivision functor, X~+»2". These generalized
simplicial theories satisfy all the usual axioms except (possibly) dimension [7].
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Functoriality. Any map q: p, — p, in .&/K induces a cochain map
q‘ : C‘(p.ZA9 p.ZM) - C‘(p.l A» p.l M)s

namely (¢*I)° =I'? for o €Z;. [If qo is degenerate set (¢g*I")° =0.] Clearly,
(@192)*=q3q;.

Exactness. To state this axiom we need an additional concept: relative cohomology
modules. Let ¢:p, — p, be an mclusnon in. //K. Define a submodule M, of j,M as
follows: M' =0 if iel(Z,); T, —0 if either i or j is in I(Z)); otherwnse, M, =
P>M. This defines a pzA-blmodule precisely vecause I(ZX)) is a filter in I(2}). Note
that E;: 0 M, = M = 5,M/M, =0 is allowable. The generalized g-relative co-
homology is H*(p,A, P2M/Mp). [In the case K =+, A=M =k this agrees with the
usual cohomology of the pair 2, CZ,.] There is an obvious cochain isomorphism
C*(pA, pyM/ M) = C*(p A, p,M) and, so, E, induces the required long exact
cohomology sequence.

Homotopy. First note that two maps ¢,0': X, — %, induce chain maps on the
chain complexes of their barycentric subdivisions. A homotopy g~ g’ induces a
chain homotopy, say 4 : Ce(Z),k) = Cs, (25, k). SO (9—q’)6 = hda — dha. We use
h to construct a cochain homotopy g*~q’*: for I'e Z"(p,A, p.M) define A€
C" Y (B A, pyM) by A°=T"°, Then

(64)° = %0 4 (~1)°8T,
But (65" =0 implies -0 = (-1)°I"**°, Hence

(84)° = Ihée-dhe _ ra-are _ aur_ arryo,
That is, g*I'-q"*I'e B"(p, A, M) and, consequently, H"(q)=H"(q’).
Excision. 1t is well known that this axiom is equivalem to exactness of the Mayer-
Victoris sequence [7]. For the latter, let ¢, : (P, : 2,2 K)—=(p: 2 - K), (a=1,2),

be vomaximal inclusions, (i.e. 2 =2,UZ,). Their mtersectnon is pj3: 21NZ,— K,
where p,, is the restriction of p to 2N Z;. Denote the inclusion p,; = p, by j,. Tken

.

q?) s, s

— C*(pA M) ® C*( P2 A, PrM)
i

()

is casily seen to be exact; it yields the required long exact sequence.

(q
0= C*pA, pM)

C*( P2 A, poM)—0

Dimension. Consider the case K =%. As we remarked earlier, we have A=A,
™M =M. Hence, (id: *+— *) > H*(A, M) and the dimension axiom fails in general.
Note, however, that if A is a k-central semi-simple algebra and M =A, then
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H*(A, M) = H*(+ k). Consequently, if A5 is the constant diagram over I(Z) deter-
mined by a k-central semi-simple algebra A, then

HXZ' k)= H*(As, A5)= H* (A5, As).

[The last isomorphism follows from case (ii) of the CCT].

The subcategory of locally finite simplicial complexes merits special attention.
For there, when M = A, the cohomulogies have graded cup products and (generally
nontrivial) Lie products. If we restrict further to finite simplicial complexes, then
a generalized simplicial cohomology (in our sense) becomes

(p:Z- K)y=H*(pA),(pM)!).
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